Real-time Hypothesis Driven Feature Extraction on Parallel Processing Architectures

نویسندگان

  • Ole-Christoffer Granmo
  • Finn Verner Jensen
چکیده

Feature extraction in content-based indexing of media streams is often computational intensive. Typically, a parallel processing architecture is necessary for real-time performance when extracting features brute force. On the other hand, Bayesian network based systems for hypothesis driven feature extraction, which selectively extract relevant features one-by-one, have in some cases achieved real-time performance on single processing element architectures. In this paper we propose a novel technique which combines the above two approaches. Features are selectively extracted in parallelizable sets, rather than one-by-one. Thereby, the advantages of parallel feature extraction can be combined with the advantages of hypothesis driven feature extraction. The technique is based on a sequential backward feature set search and a correlation based feature set evaluation function. In order to reduce the problem of higher-order feature-content/feature-feature correlation, causally complexly interacting features are identified through Bayesian network d-separation analysis and combined into joint features. When used on a moderately complex object-tracking case, the technique is able to select parallelizable feature sets real-time in a goal oriented fashion, even when some features are pairwise highly correlated and causally complexly interacting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time 3D Feature Extraction Hardware Algorithm with Feature Point Matching Capability

This paper proposes a real-time 3D feature extraction hardware algorithm with feature point matching capability between neighboring frames, which realizes 3D tracking of moving objects. This hardware algorithm is based on a 3D voting method. Both the 3D voting and tlie featiire point matching arc directly carried out through highly parallel processing by content addressable memory (CAM) i11 rea...

متن کامل

High-performance computing in image registration

Thanks to the recent technological advances, a large variety of image data is at our disposal with variable geometric, radiometric and temporal resolution. In many applications the processing of such images needs high performance computing techniques in order to deliver timely responses e.g. for rapid decisions or real-time actions. Thus, parallel or distributed computing methods, Digital Signa...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection

Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...

متن کامل

Parallel Architecture for Face Recognition using MPI

The face recognition applications are widely used in different fields like security and computer vision. The recognition process should be done in real time to take fast decisions. Principle Component Analysis (PCA) considered as feature extraction technique and is widely used in facial recognition applications by projecting images in new face space. PCA can reduce the dimensionality of the ima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002